Disk Vibration Analysis of Functionally Graded Materials

Authors

  • H. Nahvi Associate Professor, Faculty of Mechanics, University of Khomeini Shahr
  • M. validity Master of Science, Faculty of Mechanics, University of Khomeini Shahr
Abstract:

Perforated discs have many applications in different parts of industry. By making such disks of functionally graded materials, more capabilities can be obtained from them. Vibration analysis of these kinds of disks can help us make them more efficient. In this paper, modeling and evaluation of disk vibration of functionally graded materials with regard to thickness were carried out using Abaqus software. Since no certain element has been defined regarding functionally graded materials for the design and analysis of a particular element in Abaqus software, molding of such materials has been used in this application. In order to verify the results, the results obtained from ABAQUS analysis have been compared with those available in the literature. The obtained results show that by defining more layers with regard to changes in properties, the obtained results approach the exact solutions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Free Vibration Analysis of Functionally Graded Materials Non-uniform Beams

In this article, nonuniformity effects on free vibration analysis of functionally graded beams is discussed. variation in material properties is modeled after Powerlaw and exponential models and the non-uniformity is assumed to be exponentially varying in the width along the beams with constant thickness. Analytical solution is achieved for free vibration with simply supported conditions. It is...

full text

Vibration and Static Analysis of Functionally Graded Porous Plates

This research deals with free vibration and static bending of a simply supported functionally graded (FG) plate with the porosity effect. Material properties of the plate which are related to its change are position-dependent. Governing equations of the FG plate are obtained by using the Hamilton’s principle within first-order shear deformation plate theory. In solving the problem, the Navier s...

full text

Free Vibration Analysis of Functionally Graded Beams with Cracks

This study introduces the free vibration analysis of multilayered symmetric sandwich Timoshenko beams, made of functionally graded materials with two edge cracked, using the finite element method and linear elastic fracture mechanic theory. The FG beam consists of 50 layers, located symmetrically to the neutral plane, whose material properties distribution change along the beam thickness, accor...

full text

Vibration and Buckling Analysis of Functionally Graded Flexoelectric Smart Beam

In this paper, the buckling and vibration behaviour of functionally graded flexoelectric nanobeam is examined. The vibration and buckling formulations of functionally graded nanobeam are developed by using a new theory that’s presented exclusively for flexoelecteric nano-materials. So by considering Von-Karman strain and forming enthalpy equation based on displacement, polarization and electric...

full text

Nonlinear Vibration Analysis of Piezoelectric Functionally Graded Porous Timoshenko Beams

In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) beam with porosities material is investigated based on the Timoshenko beam theory. Material properties of FG porous beam are described according to the rule of mixture which modified to approximate material properties with porosity phases. The Ritz method is used to obtain the governing equation which is then...

full text

Functionally Graded Materials

Thermoelastic simulation of functionally graded materials is practically important for engineers. Here, the extension and assembly of our two previous papers (Computational Mechanics 2006, 38, p51-60; Engineering Analysis with Boundary Elements 2008, 32, p704-712) is presented to evaluate the transient temperature and stress distributions in two-dimensional functionally graded solids. In this c...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  35- 29

publication date 2014-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023